🗱 eurofins

Prüfbericht

ASONA NEDERLAND B.V.

Prüfung der Produktemissionen gemäß M1
SONACOUSTIC

September 2011

Auftraggeber: ASONA NEDERLAND B.V.

P.O.BOX 9057

1180 HB Amstelveen

Netherlands

Datum:

29 September 2011

Prüflabor:

Eurofins Product Testing A/S

Smedeskovvej 38, DK-8464 Galten

Thomas Neuhaus

Leiter der Prüfstelle für Produktemissionen

Martin Møller Pedersen

M.Sc. (Pharm)

Inhaltsverzeichnis

1	Beschreibung der eingesetzten Prüfmethoden	3
1.1	Probenpräparation	3
1.2	Prüfkammer	3
1.3	Probenahme, Desorption, Analyse	3
1.4	Messunsicherheit der Prüfmethode	5
2	Ergebnisse der Emissionsprüfungen	6
2.1	Kammerprüfung nach 28 Tagen	6
2.2	Sensorische Prüfung nach 28 Tagen	6
3	Bewertung der Ergebnisse	7
Anhang	:	
Anhang	1: Chromatogramm VOC	8
Anhang	2: Bericht für RTS in Finnland	C

Einleitung

Eurofins Product Testing A/S erhielt am 29 Juni 2011 folgendes Muster eines Dämmstoffes

 SONACOUSTIC Model: PL

zur Emissionsprüfung gemäß M1. Die Kennzeichnung des Musters war eindeutig. Das Muster war sachgerecht verpackt und nicht beschädigt. Die Prüfung erfolgte im Prüflabor für Produktemissionen von Eurofins Product Testing A/S. Bis zum Beginn der Prüfungen am 11 August 2011 wurde das Muster in verschlossenem Zustand bei Raumtemperatur gelagert.

1 Beschreibung der eingesetzten Prüfmethoden

Die angewandten Methoden entsprechen dem "Protocol for Chemical and Sensory Testing of Building Materials" definiert von dem "Finnish Emission Classification of Building Materials" (Version of 2004). Folgende Methoden wurden dort zugrunde gelegt: ISO 16000-3, ISO 16000-6, ISO 16000-9, ISO 16000-11, ISO 16017-1. Interne Methodenbezeichnungen: 9810, 9811, 9812, 2808, 8400.

1.1 Probenpräparation

Ein Muster wurde vom Auftraggeber luftdicht verpackt und an das Labor von Eurofins Product Testing A/S gesandt. Sofort nach Entnahme aus der Verpackung wurde aus dem Muster ein Prüfling entnommen und die Kanten und Rückseite abzudecken. Der Prüfling wurde unverzüglich in die Prüfkammer gelegt (Interne Methode 9810). Die Flächenbeladung war umrechnen zu 0,4 m²/m³.

1.2 Prüfkammer

Chemische Prüfung: Die Prüfkammer bestand aus Edelstahl und hatte ein Volumen von 119 Litern. Die Luftreinigung erfolgte über mehrere Stufen, und vor Beginn der Prüfung wurde eine Blindwertkontrolle durchgeführt. Die Prüfbedingungen lagen bei 23°C und 50 % relative Luftfeuchte (in der Zuluft) mit einem Luftwechsel von 0,5 pro Stunde. Die Flächenbeladung der Prüfkammern betrug 1,6 m² Probe je m³ Luftraum.

Sensorische Prüfung: Die Prüfkammer war eine "BIG-PAC"- Kammer und bestand aus Glas und hatte ein Volumen von 200 Litern. Die Luftreinigung erfolgte über mehrere Stufen, und vor Beginn der Prüfung wurde eine Blindwertkontrolle durchgeführt. Die Prüfbedingungen lagen bei 23°C und 50 % relative Luftfeuchte (in der Zuluft). Während der Prüfung betrug die flächenspezifische Ventilationsrate 1,4 m³/(h x m²) entsprechend einem Volumenstrom von 0,9 l/s (3,24 m³/h; Luftwechsel 16 pro Stunde). Die Beladung der Prüfkammer betrug 11,4 m² Probenfläche pro m³ Luftvolumen (Interne Methode 9811).

1.3 Probenahme, Desorption, Analyse

Alle Emissionen wurden mit folgender Formel in flächenspezifische Emissionsraten SER umgerechnet:

 $SER = C \times n / L$

Mit:

C Konzentration in der Prüfkammer, µg/m³

n Luftwechselrate, 1/h

L Kammerbeladung, m²/m³

1.3.1 Emissions-Prüfung auf Kanzerogene nach 28 Tagen

Geprüft wurde die Präsenz von Kanzerogenen nach der IARC 1987 Liste, Kategorie C1.

Die Probenahme der gelisteten Stoffe aus der Abluft der Prüfkammer erfolgte auf Tenax TA mit nachfolgender Thermodesorption (Perkin Elmer) und Analyse mit Gaschromatographie/Massenspektroskopie (30 m Säule, 0,25 mm ID, 0,25 µm HP-1 Film, Agilent) (interne Methodenbezeichnung: 2808).

🎎 eurofins

Die Abwesenheit der gelisteten Stoffe galt als erwiesen, wenn bei der jeweils passenden relativen Retentionszeit im Chromatogramm die stoffspezifisch charakteristische Kombination von Fragmentionen nicht auftrat. Anderenfalls wurde geprüft, ob die geforderte Bestimmungsgrenze (1 µg/m³) überschritten wurde. Außerdem wurde in diesem Fall die Identität zusätzlich abgesichert durch Vergleich eines Full-Scan-Massenspektrums mit dem Spektrum eines Standards.

1.3.2 TVOC-Prüfung nach 28 Tagen

Die Emissionen organischer Stoffe bei definierter Lagerung wurden durch eine Probenahme zu den angegebenen Zeitpunkten aus der Abluft der Prüfkammer auf Tenax TA mit nachfolgender Thermodesorption und Analyse mit Gaschromatographie/Massenspektroskopie (Interne Methoden 9812 / 2808) geprüft.

Eine Identifizierung und individuelle Quantifizierung wurde für alle Einzelstoffe ab einer Luftbelastung in der Prüfkammer in Höhe von mehr als 2 μ g/m³ (im Totalionenstromchromatogramm "TIC" als Toluol berechnet) vorgenommen.

Die Ergebnisse der Einzelstoffe wurden, je nach deren Auftreten im Gaschromatogramm bei Analyse mit einer unpolaren Säule (HP-1), in drei Gruppen berechnet:

- Flüchtige organische Verbindungen VOC: Alle Stoffe, die zwischen n-Hexan (n-C₆) und n-Hexadecan auftraten.
- Weniger flüchtige organische Verbindungen SVOC: Alle Stoffe, die nach n-Hexadecan (n-C₁₆) auftraten.
- Sehr flüchtige organische Verbindungen VVOC: Alle Stoffe, die vor n-Hexan (n-C₆) auftraten.

Die Ermittlung der Summe der flüchtigen organischen Stoffe (TVOC) erfolgte durch Addition der Ergebnisse der Einzelstoffe im Retentionsbereich C_6 - C_{16} als Toluoläquivalent gemäß ISO 16000-6.

Die Ermittlung der Summe der schwer flüchtigen organischen Stoffe (TSVOC) erfolgte durch Addition der Ergebnisse der Einzelstoffe im Retentionsbereich C_{16} - C_{22} als Toluoläquivalent gemäß ISO 16000-6.

Die Ermittlung der Summe der sehr flüchtigen organischen Stoffe (TVVOC) erfolgte durch Addition der Ergebnisse der Einzelstoffe im Retentionsbereich < C $_6$ als Toluoläquivalent gemäß ISO 16000-6.

Durch diese Messung wurden nur Stoffe gemessen, die auf Tenax TA adsorbiert und durch Thermodesorption desorbiert werden können. Falls andere Emissionen vorlagen, wurden diese nicht oder nur unvollständig erfasst.

1.3.3 Formaldehyd-Prüfung nach 28 Tagen

Geprüft wurde die Präsenz von Formaldehyd. Die Probenahme erfolgte aus der Abluft der Prüfkammer auf DNPH-imprägniertes Silicagel (ISO 16000-3) mit nachfolgender Lösemitteldesorption und Analyse mit HPLC/Dioden-Array-Detektor (Interne Methoden 9812 / 8400).

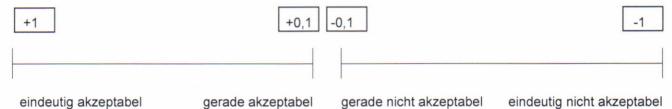
Die Abwesenheit von Formaldehyd galt als erwiesen, wenn bei der jeweils passenden relativen Retentionszeit im Chromatogramm kein UV-Signal bei einer charakteristischen Wellenlänge auftrat. Anderenfalls wurde geprüft, ob die Bestimmungsgrenze überschritten wurde. Außerdem wurde in diesem Fall die Identität zusätzlich abgesichert durch Vergleich eines Vollspektrums mit dem Spektrum eines Standards.

1.3.4 Ammoniak-Prüfung nach 28 Tagen

Geprüft wurde die Präsenz von Ammoniak. Die Probenahme erfolgte aus der Abluft der Prüfkammer auf mit Schwefelsäure beschichtete Silicagelrohre mit nachfolgender Lösemitteldesorption und Analyse mit UV/VIS (Interne Methoden 9812 / 4430).

Die Prüfergebnisse gelten nur für die untersuchte(n) Probe(n). Der Bericht darf nur als Ganzes wiedergegeben werden, Auszüge nur mit schriftlicher Zustimmung des Prüflabors

🤼 eurofins



Die Abwesenheit von Ammoniak galt als erwiesen, wenn kein UV-Signal bei dei charakteristischen Wellenlänge auftrat. Anderenfalls wurde geprüft, ob die Bestimmungsgrenze überschritten wurde.

1.3.5 Sensorische Prüfung nach 28 Tagen

Die sensorische Prüfung wurde nach 28 Tagen Lagerung in einer Prüfkammer durchgeführt. Ein Panel von 25 Personen bewertete erst den Geruch in dem Raum und anschließend zweimal für jede Prüfkammer. Zwischen den Bewertungen wurde eine Pause von mindestens 2 Minuten gemacht. Jede Bewertung basiert auf 2-3 Atemzügen aus der Kammerluft und die Bewertung erfolgte anhand unten dargestellter Skala zwischen +1 (eindeutig akzeptabel) und -1 (eindeutig nicht akzeptabel). Das Ergebnis wurde als Mittelwert dargestellt und nur Panelteilnehmer, die die Luft einer leeren Referenzkammer als akzeptabel (> 0,8) eingestuft haben, wurden zu der Prüfung zugelassen.

Sensorische Akzeptanz:

Abweichungen von der M1 Test Methode 1.3.6

Keine Abweichungen.

1.3.7 Akkreditierung

Die beschriebenen Prüfmethoden wurden von DANAK gemäß EN ISO/IEC 17025:2005 akkreditiert (Nr. 522). Einzelne Parameter sind jedoch derzeit noch nicht in dieser Akkreditierung enthalten. Die Akkreditierung gilt nicht für die mit * gekennzeichneten Parameter in diesem Prüfbericht. Die Analyse wurde jedoch auch für diese Parameter auf dem gleichen Qualitätsniveau durchgeführt wie für die akkreditierten Parameter.

Die Geruchsprüfung ist nicht Teil der Akkreditierung, aber Eurofins Produkt Testing A/S ist ein vom RTS, Finnland, akzeptiertes Prüflabor für die M1 Prüfung inklusive der Geruchsprüfung.

Messunsicherheit der Prüfmethode 1.4

Die relative Standardabweichung der Prüfmethode beträgt 22% (RSD). Die erweiterte Messunsicherheit U_m beträgt 45% und entspricht 2 x RSD%, siehe auch www.eurofins.dk, Suchwort: Uncertainty. Diese Unsicherheit beinhaltet keine sensorische Prüfung.

2 Ergebnisse der Emissionsprüfungen

2.1 Kammerprüfung nach 28 Tagen

SONACOUSTIC	CAS Nr.	Konzentration	Emissionsrate	Grenzwert
		μg/m³	μg/m²xh	µg/m²xh
TVOC (C6-C16)	-	12	15	< 200
Kanzerogene	-	< 1	< 1	< 5
Formaldehyd	50-00-0	17	22	< 50
Ammoniak	7664-41-7	< 5	< 7	< 30

< bedeutet weniger als

Detaillierte Ergebnisse siehe Anhang 2

2.2 Sensorische Prüfung nach 28 Tagen

Sample	SONACOUSTIC			
Gesamtdurchschnitt	0,6			
	Erste Bewertung	Zweite Bewertung		
Durchschnitt	0,6	0,7		
1	0,2	0,2		
2	0,4	0,9		
3	0,9	0,8		
4	0,8	0,9		
5	1	1		
6	0,8	0,8		
7	0,4	0,5		
8	1	1		
9	0,9	0,9		
10	0,9	0,9		
11	1	0,9		
12	0,4	0,5		
13	0,9	0,9		
14	0,5	0,5		
15	1	1		
16	0,3	0,3		
17	0,9	0,8		
18	0,9	0,9		
19	0,9	0,9		

Die Prüfergebnisse gelten nur für die untersuchte(n) Probe(n).

Der Bericht darf nur als Ganzes wiedergegeben werden, Auszüge nur mit schriftlicher Zustimmung des Prüflabors

20	1	1 1
	0,9	1
21	**	0.4
22	-0,2	-0,1
23	0,5	0,5
24	0,9	0,9
25	-0,2	-0,4

Standardabweichung der Geruchsprüfung: 0,4

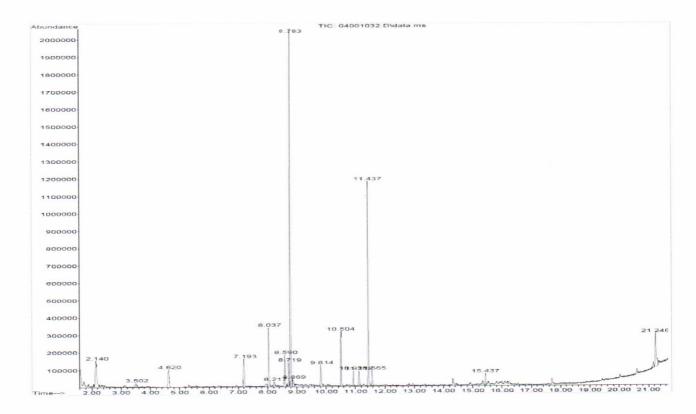
3 Bewertung der Ergebnisse

Bewertung der Ergebnisse für SONACOUSTIC nach der M1-Prüfmethode.

Die Emissionsraten nach 28 Tagen waren:

- Unterhalb der Bewertungsgrenze von 200 µg/m²h für den TVOC
- Unterhalb der Bewertungsgrenze von 5 μg/m²h für Kanzerogene
- Unterhalb der Bewertungsgrenze von 50 μg/m²h für Formaldehyd
- Unterhalb der Bewertungsgrenze von 30 μg/m²h für Ammoniak
- Die Sensorische Akzeptanz erfüllt die Vorgabe von +0.1 oder höher

Das untersuchte Produkt SONACOUSTIC erfüllt die Vorgaben nach M1 für die geprüften Parameter.



eurofins

Anhang 1: Chromatogramm VOC nach 28 Tagen

eurofins

Anhang 2: Bericht für RTS in Finnland

Emission measurements for the emission classification of building materials

Product: Ins	sulation m	aterial				
Deaduat		CONVCOR	TIC			
Product name		SONACOUSTIC				
Production date (by the manufacturer)		-				
	irer)					
Sending date	1505)	27.06.2011				
(by the manufactu						
Description of pac	ckaging and	Properly packaged and not damaged				
transport Product received	at the					
testing laboratory	The state of the s	29.06.2011				
Thickness of the	· · · · · · · · · · · · · · · · · · ·					
		11.08.2011				
Test period starte		11.00.2011				
Conditions during (C°,RH%)	ageing	23 °C, 50 % RH in test chamber				
Emission sampling	ıg, date	08.09.2011				
Chamber te	chnique					
Parameter	Chamber volume (m³) and type	Air change rate (h ⁻¹)	Tempera- ture (°C ± °C)	Relative humidity (%)	Test specimen loa- ding factor (m ² m ⁻³)	
VOC, TVOC, Formaldehyde, Ammonia	stainless steel	0.5	23 ± 1	50	1.6	
Sensory evaluation	200 litres BIG-PAC	16	23 ± 1	50	11.4	
Emission s	ampling a	nd analyt	ical meth	ods		
Parameter	Method, Standard or own va- lidated me- thod	Adsor- bent / Absor- bent	Sampling volume (I)	Quantifi- cation / Analysis method	Detection limit of the method used	
VOC, TVOC	2808	Tenax	Ca 9.6	GC/MS	1 μg/m²h	
Formaldehyde	8400	DNPH- coated silicagel	Ca 44	HPLC/UV	2 μg/m²h	
Ammonia	4430	Sulphuric acid coated sili- cagel	Ca 100	Spectro- fotometry	10 μg/m²h	
Sensory evaluation	9800 mod.	-	-	Human nose	-	

Measurem	ent The unc	ertainty of the testing proce		ding all step	
			Identification %		
			TVVOC+TSVOC		
	N	lo single VOC's detected	TO (00		
Retention time	Name		CAS Number		
Single VO	Cs outside the frame C6	-C16			
		Identif	ication %	100	
•••••			Identified	15	
, , ,			TVOC	5,0 15	
11,44	2-Ethylhexylacrylat *	103-11-7	103-11-7		
8,78	2-Ethyl-1-hexanol *	104-76-7	104-76-7		
Retention time	Name	CAS Numl	CAS Number		
Single VO	Cs C6-C16				
Sensory eva	luation	Average of acceptability	0,6		
The chroma components	togram with identified main	Annex 1			
Carcinogens, SER > 1 μg/(m²h)		μg/(m²h) as toluene equivalents	< 1		
Ammonia		μg/(m²h)	< 7		
C ₁₆ Formaldehyde		See separate table µg/(m²h) 22			
Single VOCs outside the frame C ₆ to					
Single VOCs C ₆ to C ₁₆		between C ₆ to C ₁₆ See separate table	10		
TVOC		μg/(m²h) as toluene equivalent	15		

Not a part of our accreditation. See 1.3.7 Akkreditierung